آموزش زبان با داستان انگلیسی
 
دانلود پایان نامه مروری بر سیستم تشخیص چهره و الگوریتم های یادگیری

سمینار برای دریافت درجه کارشناسی ارشد “M.Sc” مهندسی کامپیوتر- نرم افزار

عنوان :مروری بر سیستم های تشخیص چهره و الگوریتم های یادگیری

تعداد صفحات : 68

چکیده:
بیـشتر تحقیقـات بوسـیله فیزیولوژیـستهـا و روانـشناسان و مهندسـان روی موضـوعات مختلـف از تشخیص چهره بوسیله ماشین و انسان، صورت گرفته است. اهمیت روش های اتوماتیک تـشخیص چهـره، ما را بر آن داشته است که برای ادامه کار در این زمینـه، تحقیـق کـاملی روی کارهـای انجـام گرفتـه، از پیدایش این رشته از علم کامپیوتر انجام دهیم. اگر چه بسیاری از تئوری ها و فرضیه هـای مطـرح شـده،روی مجموعه ای از تصاویر کوچک، بررسی شده اند، ولی توانسته اند بسیاری دستاوردهای مهمی در ایـن زمینه به همراه داشته باشند.
در این تحقیق، ابتدا تاریخچه ای از موضـوعات مربـوط بـه تـشخیص هویـت، بـا اسـتفاده از خـواص بیومتریک ارائه شده و در ادامه بحث تشخیص چهره را به صورت اختصاصی در میـان مباحـث بیومتریـک ارائه شده است. ساختار و چهارچوب عمومی یک سیـستم تـشخیص چهـره، مهمتـرین موضـوع در آمـاده کردن آن می باشد، همچنین الگوریتم ها و روش هایی که بر اساس آن تشخیص چهره انجام مـی گیـرد،قسمت اصلی این تحقیق می باشد که شامل گروه بندی ها و نوع دیدگاه به مسئله می باشد که در انتهای بحث، استفاده از آموزش و یادگیری و الگـوریتم هـای آن را در بحـث کـشف چهـره، محـدود کـرده ایـم.
مشکلات مربوط به تشخیص چهره، می توانند شامل نور، زاویه دید دوربین، حرکت و سایر موارد محیطـی باشند، که این مشکلات نیز به صورت جداگانه مورد بررسی قرار گرفته اند.

مقدمه:
در دنیای به هم پیوسته و پیچیده امروزی، نگهداری و امنیت اطلاعـات، بـسیار مهـم و مـشکل شـده است، هر چند وقت یکبار در مورد تبهکاری های مربوط کارتهای اعتباری، هک شدن کامپیوترها و نقض امنیت در شبکه ها و دولت ها، چیزهایی می شنویم. در بیشتر این کلاهبرداری ها، افراد خاطی، به نحـوی امنیت سیستم ها را با عبور از سد محافظت های از قبل تعیین شده، مورد دستبرد قرار داده اند.
تکنولوژیهای جدید برای تعیین هویت منحصر هر فرد، بر پایه روش های Biometric بنیـان نهـاده شده اند. که این روش ها، روشهای خودکـاری از بـازبینی و تـشخیص هویـت موجـودات زنـده در زمینـه ویژگیهای فیزیکی از قبیل اثر انگشت یا وضعیت چهره، و یا سایر رفتارهای افراد، از قبیل دست دادن، می باشند. به این دلیل که، ویژگی های فیزیکی خیلی کمتر تغییر می کنند، ولی موارد رفتاری ممکـن اسـت به علت استرس، وضعیت روانی شخص، یا موقعیت شخص به راحتی دستخوش تغییـرات شـوند، در میـان روش ها و متدهای مختلف برای تعیین هویت، روش هایی که از ویژگی های فیزیکی استفاده مـی کننـد، علی رغم مشکلاتی که هنگام پیاده سازی وجود دارد، قابل اعتمادتر از آنهـایی هـستند کـه ویژگـی هـای فیزیولوژیکی(زیستی) را بکار می گیرند.
با بررسی زندگی دیجیتالی بشر، به راحتی متوجه این نکته خواهیم شد که امـروزه بـشر بـا نیازهـایی مواجه است که در سالهای قبل این نیازها وجود نداشت. این نیازها شامل سازمان، گروه و امنیت آنها مـی باشد. همیشه افزایش جمعیت و تحرک آن در همه جهت ها، باعث بالا رفـتن راه هـای انتقـال و اشـتراک اطلاعات، شده است، که این تغییر مکان ها، در ساختارهای پیچیده ای انجام مـی شـوند. همـانطوری کـه تحرک، نشات گرفته از رفتارهای انسانی و اطلاعاتی است، امنیت نیز اطلاعـات شخـصی و مقـادیر آنهـا را شامل می شوند. در محیط هایی که اهمیت امنیت و تشکیلات، افزایش یافتـه اسـت، شناسـایی و تعیـین اعتبار در زمینه های گوناگونی از تکنولوژی ها توسـعه داده شـده انـد. کنتـرل ورودیهـای سـاختمان هـا،کنترل دسترسی در کامپیوترهای عمومی، مثالهایی هستند کـه نـشان دهنـده تـشخیص هویـت و اعتبـار سنجی در جامعه کنونی میباشند.
روش تشخیص چهره (Face Recognition) یکی از چنـدین روش Biometric اسـت کـه دارای دقت بالا بوده و می تواند تا مدت ها قابل اتکا باشد. برخلاف روش های دیگر اعتبار سنجی که لازم بود تـا کاربر حداقل PIN و کلمه عبور، را به یاد داشته باشد، در روش های تشخیص چهره، کاربر خیلی راحت با چهره خودش، می تواند در پروسه اعتبار سـنجی وارد شـود. در حـال حاضـر عـلاوه بـر ایـن کاربردهـای کلاسیک، برای تشخیص چهره، اعتبار سنجی های جدیدی پدیدار شده اند. به طور نمونه، در بانک ها و یـا تأسیسات قضایی که امنیت از سایر ادارات معمولی بالاتر است، امنیت بیشتر توسط کامپیوترهـای زیـادی که امروزه مجهز به چندین دوربین می باشند، انجام می شود. در این حالت، یک نرم افزار تشخیص چهره، به صورت مداوم، آنچه که در جلوی دوربین اتفاق می افتد، را در کنترل داشته و در صورت برخورد بـا هـر گونه وضعیتی خارج از وضعیت از قبل تعیین شده، هشدارهای لازم را اعلام می نماید.
در حال حاضر، چندین روش برای سازماندهی و طبقه بندی زمینـه هـای مختلـف تـشخیص چهـره، امکان پذیر میباشد. به عنوان نمونه، الگوریتم هایی که با چهـره و محـیط آن سـر و کـار دارنـد (هماننـدسیستم های کنترل نشده)، باید با الگوریتم هایی که با سیستم های کنترل شده(هماننـد چـراغ راهنمـا ونورپردازی یک تئاتر) کار می کنند، متمایز گردند. همچنین سیستم هایی که از یک یا چند تـصویر بـرای تشخیص چهره استفاده می کنند، از سیستم هایی کـه از مقـادیر پیوسـته ویـدئویی اسـتفاده مـی کننـد،متمــایز مــیشــوند. در صــورتیکه ایــن تفــاوت هــای ســطح پــایین در مــشکلات ضــروری در Face  Recognition حذف شوند، یـک گـروه بنـدی براسـاس سـه حالـت Frontal و Profile و -ViewTolerant ارائه می شود.می توان گفت که الگوریتم های تشخیص چهره، مدل های ساده هندسی را استفاده مـی کننـد، امـا پروسه تشخیص، امروزه در یک علم پیچیده ریاضی و پروسه های Matching وارد شده است. بزرگتـرین پیشرفت آنها در سالیان اخیر، سوق دادن تکنولوژی تشخیص چهره، به صحنههای متاثر از نور مـی باشـد،بدین ترتیب که می توان در شرایط نوری متفاوت نیز، پروسه تشخیص چهره را به نحو مطلوبی انجـام داد.
تشخیص چهره، می تواند برای بازبینی (Verification)و تعیین هویت (Identification)، نیز بـه کـار برده شود.
زمینه های زیاد تجاری، برای ایجاد اینگونه نرم افزارها و امکان دسترسی به تکنولوژی های مورد نیـاز بعد از چندین سال تحقیق، دو دلیل مهم برای تکیـه بـر اهمیـت Face Recognition و ادامـه تـلاش برای داشتن سیستم های قوی تر می باشد.
روش های مطمئن زیادی از تشخیص بیومتریک اشخاص، وجود دارد. برای مثال، روش های آنالیز اثر انگشت یا بررسی عنبیه و شبکیه، اشخاص هم اکنون وجود دارند. از آنجائیکه یک تصویر چهره، می توانـد از روبرو یا نیم رخ باشد، بیشتر اوقات بدون همکاری و حتی اطلاع شخص مورد نظر، عمل می کند. جدول الف، تعدادی از برنامه های مربوط به Face Recognition را نشان می دهد.

 

ادامه مطلب...
طراحی سیستم نظارت چهره راننده جهت تشخیص خستگی و عدم تمرکز حواس

عنوان : طراحی سیستم نظارت چهره راننده جهت تشخیص خستگی و عدم تمرکز حواس

پایان‏ نامه کارشناسی ارشد رشته مهندسی کامپیوتر

گرایش هوش مصنوعی و رباتیک

تعداد صفحات : 115

چکیده

هر ساله تصادفات رانندگی زیادی به دلیل خواب‏ آلودگی و عدم تمرکز حواس راننده در سراسر دنیا رخ می‏دهد که خسارت‏های جانی و مالی فراوانی به همراه دارند. یکی از روش‏های تشخیص خستگی و عدم تمرکز حواس، استفاده از سیستم‏های نظارت چهره راننده است. سیستم‏های نظارت چهره راننده با دریافت تصاویر از دوربین و پردازش آنها، نشانه‏ های خواب‏ آلودگی و عدم تمرکز حواس را از چشم، سر و چهره استخراج می‏کنند. در این پایان‏ نامه یک سیستم نظارت چهره راننده طراحی شده است که با استخراج نشانه‏ های خستگی و عدم تمرکز حواس از ناحیه چشم و چهره، کاهش هوشیاری راننده را تخمین می‏زند. در این سیستم چهار ویژگی شامل درصد بسته بودن چشم (PERCLOS)، نرخ پلک زدن، کاهش فاصله بین پلک‏ها و میزان چرخش سر استخراج می‏شود. سه ویژگی اول مربوط به نشانه‏ های بروز خستگی و عدم تمرکز حواس در ناحیه چشم و ویژگی آخر مربوط به نشانه‏ های کاهش هوشیاری در ناحیه چهره و سر می‏باشد. ویژگی ‏های ناحیه چشم بر اساس تغییرات پروجکشن افقی ناحیه چشم و ویژگی‏های ناحیه چهره بر اساس بررسی قالب چهره استخراج می‏گردد. سپس این ویژگی‏ها توسط یک سیستم خبره فازی مورد پردازش قرار می‏گیرد تا میزان خستگی و عدم تمرکز حواس راننده تخمین‏ زده شود. تصویربرداری سیستم پیشنهادی در طیف مرئی و با دوربین سطح خاکستری انجام شده است. نتایج آزمایش‏ها بر روی فیلم‏ های تهیه شده در محیط واقعی و آزمایشگاهی نشان می‏دهد که روش پیشنهادی دقت بسیار خوبی در استخراج ویژگی و تشخیص کاهش هوشیاری راننده دارد. از لحاظ سرعت اجرای الگوریتم، سرعت سیستم پیشنهادی حدود 5 فریم در ثانیه می‏باشد که می‏توان آن را سیستم بلادرنگ محسوب کرد.

پیشگفتار

افزایش تعداد خودروها در جهان و در نتیجه آن افزایش آمار خسارات و تلفات ناشی از تصادفات، باعث شد تا محققین به دنبال کشف علل اصلی تصادفات رانندگی باشند. یکی از مهمترین این علل، خستگی و عدم تمرکز حواس راننده می‏باشد که علت اصلی حدود 20% از تصادفات محسوب می‏شود. با توجه به نقش موثر خستگی و عدم تمرکز حواس راننده در بروز تصادفات، راهکارهایی برای مقابله با این عامل معرفی شد. یکی از راهکارهای اصلی و جدید برای تشخیص خستگی و عدم تمرکز حواس راننده و اعلام هشدار در مواقع ضروری، سیستم‏های نظارت چهره راننده است. پیشنهاد تولید سیستم‏های نظارت چهره راننده اولین بار در اواخر قرن 20 میلادی مطرح شد، اما عمده تحقیقات در این زمینه مربوط به بعد از سال 2000 میلادی می‏باشد.

تاکنون طراحی و تولید چنین سیستم‏هایی در ایران به طور جدی مورد بررسی قرار نگرفته است. سیستم ارائه شده در این پایان‏نامه به عنوان اولین سیستم نظارت چهره راننده در ایران می‏باشد که قادر است میزان خستگی و عدم تمرکز حواس راننده را با استفاده از پردازش تصاویر چهره راننده تخمین بزند. هرچند تحقیقات بیشتری برای تولید یک سیستم نظارت چهره راننده با هدف کاربرد در خودروهای تجاری مورد نیاز است، اما این پایان‏نامه می‏تواند شروع بسیار خوبی برای آغاز تحقیقات در این زمینه باشد.

 

ادامه مطلب...